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ABSTRACT

Clustering is one of the most important techniques used in data min-
ing. The major aim of clustering is to partition a set of data objects
into clusters such that data objects in the same cluster are more similar
to each other than those in the other clusters. We proposed a modi�ed
statistical approach for data preprocessing to improve heterogeneous dis-
tance functions from Heterogeneous Euclidean-Overlap Metric (HEOM)
by replacing the range function which serves as a local normalization
by interquartile range function, and the approach is called Interquar-
tile Range- Heterogeneous Euclidean-Overlap Metric (IQR-HEOM). The
proposed approach is used to overcome the weakness of using range func-
tion as local normalization in HEOM. However, using range function and
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dividing it by range allows outliers to have big e�ect on the contribu-
tion of the attributes. In addition, cohesion measures how closely re-
lated objects are in a cluster. While, silhouette measures how distinct
or well-separated a cluster is from other clusters. To evaluate the per-
formance of the proposed approach, simulation study and real life data
sets were considered. Therefore, comparing the performance of the pro-
posed approach and the existing methods, it is evidently clear that the
suggested approach outperformed the existing methods, even with the
contamination of the data, still the proposed approach had shown better
performance.

Keywords: K-Means, simulation, interquartile, heterogeneous and clus-
tering.
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1. Introduction

In data mining, clustering is one of the most important techniques. The
clustering can be used in many �elds such privacy preserving, information re-
trieval and text analysis in Zhang et al. (2010). The main aim of clustering
is to partition a set of data objects into clusters such that data objects in
the same cluster are more similar to each other than those in the other clus-
ters. Normally, data sets to be mined contain both numeric and categorical
attributes.

Hence, most of the existing algorithms are limited to one of the two data
types as the K-Means, K-Mode , Fuzzy K-mode. Cao et al. (2012) proposed a
new dissimilarity measure for the K-mode algorithm, and presented a method to
simultaneously �nd initial center and the number of clusters for the categorical
data.

Up to the present time, there is some work for dealing with mixed data. It is
important to note that many distance functions have been proposed to handle
the issue. Moreover, lots of these functions work well for numeric attributes
but do not appropriately handle nominal attributes. When all attributes are
nominal, the simplest distance function is the Overlap Metric (OM), which
simply counts the number of di�erent attribute values of each pair of instances
and is widely used by instance-based learning inAha (1992) and locally weighted
learning. However, OM is a little rough to measure the distance between each
pair of instances, because it fails to make use of additional information provided
by nominal attribute values that can aid in generalization. In order to �nd
reasonable distance function between instances with nominal attributes only,
the Value Di�erence Metric (VDM) was proposed by Stan�ll and Waltz (1986).
In VDM, there were some drawbacks and limitations, which made them to
propose a novel distance function: Frequency Di�erence Metric (FDM).

The FDM uses the joint frequencies of class label and attributes values,
instead of the conditional probabilities, to compute the distance between two
instances. Moreover, they stated that their proposed method is very simple,
even much simpler than the basic VDM. That is, they used the Manhattan
distance between the joint frequency vectors of these two instances as their
distance.

In recent times (ChitraDevi et al. (2012)), lots of researchers in the literature
had made use of Heterogeneous Euclidean-Overlap Metric (HEOM) in di�erent
ways and areas. In order to evaluate and cope with heterogeneous data, to
contain both nominal and ordinal attributes, the two approaches are usually
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taken as: (1) The data is transformed into one of the two data types that
complies with the distance measure used, and (2) the two types of distance
measures are combined and handle the data separately in accordance with the
data type.

However, both approaches are problematic when it comes to the interpre-
tation of results. Therefore, they proposed novel distance in their study called
Neighbourhood Counting Metric (NCM), to overcome the problem. The pro-
posed method is derived from a probability function and it can handle both
nominal and ordinal attributes in a conceptually uniform way. The proposed
method has the following advantages; the new NCM is conceptually simple,
it is straight forward to implement. It also has the added property that it is
independent of the underlying analytical or reasoning task (example classi�ca-
tion). The measure is clear and unambiguous meaning is de�ned by the number
neighbourhood of a query that include or cover a given data point.

In Peng et al. (2015), stated three di�erent methods in existence for man-
aging heterogeneous data. Firstly, is to convert nominal attributes to integer
through coding and then consider them as numerical attributes. Its major
problem is instability as the performance is easily a�ected by the use of a
coding mechanism. Secondly, the method is to discrete numerical attributes,
and then treat them as nominal attributes, classi�cation and regression tree
(CART), and other methods. Generally, discretization causes loss of infor-
mation. Thirdly, the method is to learn a distance, such as the value dif-
ference metric (VDM), heterogeneous value di�erence metric (HVDM), het-
erogeneous euclidean-overlap metric (HEOM) and other methods (Stan�ll and
Waltz (1986)). This type of method can be combined based on distance (ex-
ample K-Nearest Neighbour). The overlap is a simple and e�ective method to
use. However, it only determines whether nominal attributes are equal to one
another, and does not fully exploit classi�cation.

The VDM was introduced by Stan�ll and Waltz (1986) to provide an ap-
propriate distance function for nominal attributes. A simpli�ed version of
the VDM (without the weighting schemes was proposed). The HVDM was
proposed based on the following reasons; the Euclidean distance function is
inappropriate for nominal attributes, VDM is inappropriate for continuous at-
tributes, neither is su�cient enough on its own for use on heterogeneous appli-
cation, that is one with both nominal and continuous attributes.

The Windowed Value Di�erence Metric (WVDM) samples the value of
Pa,x,c at each value x occurring in the training set for each a, instead of the
midpoint of each range. However, the discretized ranges are not even used by
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WVDM on continuous attributes, except to determine an appropriate window
width, wa, which is same as the range width in Discretized Value Di�erence
Metric (DVDM) and Interpolated Value Di�erence Metric (IVDM).

In ChitraDevi et al. (2012), they presented various distance functions that
can be used to perform cluster based outliers detection in wireless sensor net-
works. They made use of the e�ciency of those resulting clustering to detect
outliers by calculating the false alarm rate and false positive rate; using data
collected from Intel Berkeley Laboratory. From their results obtained, they
claimed that all the three distances (Euclidean, Manhattan, and HEOM) can
be applied to perform clustering. However, they added that Euclidean and
Manhattan requires normalization to avoid deviation from dynamic ranges,
whereas HEOM requires no normalization as it performs local normalization
using range. They concluded that based on the data used, HEOM provides
greater accuracy even for slight data variation.

In this paper, we propose a new method to enhance HEOM to overcome
the weakness of the existing method, whereby HEOM needs no normalization
it executes local normalization using range function in ChitraDevi et al. (2012).
The procedure used in HEOM, by dividing it with range allows outliers to have
big e�ect on the contribution of the attributes. They further recommended
using interquartile range which is more robust to range against outliers in
data preprocessing. Therefore, we proposed a method by replacing range with
interquartile range in HEOM (ChitraDevi et al. (2012)).

This paper is organized as follows: Section 2, presents materials and meth-
ods, comprises of conventional and proposed methods. Section 3, reviews and
evaluates the simulation study. Section 4, gives results and discussion. Section
5, �nally, gives some concluding remarks.

2. Materials and Methods

2.1 Conventional Methods

The two distance functions, Euclidean and Manhattan which handles only
continuous input attributes and also applied to perform clustering as homoge-
neous distance functions. The HEOM; handles both continuous and nominal
attributes with overlap metric for nominal attributes and normalize Euclidean
distance for linear attributes.
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2.1.1 Euclidean Distance Function

The Euclidean distance was �rst applied in clustering analysis. The Eu-
clidean distance is calculated as in Lloyd (1982):

d(xi, xj) =

√√√√ n∑
i=1

(xi − xj)2 (1)

This distance measure has the appealing property, the d(xi, xj) can be inter-
preted as physical distance between p-dimensional points x′

i = xi1, xi2, ..., xip

and x′
j = (xj1, xj2, ..., xjp) in Euclidean space.

2.1.2 Manhattan Distance Function

The Manhattan distance was �rst used in clustering analysis. It sums the
di�erence between their components. Manhattan distance is computed as fol-
lows in Lloyd (1982):

dman(xi, xj) =

n∑
i=1

| xi − xj | . (2)

where i, j = 1, 2, . . . , n.

2.1.3 Heterogeneous Euclidean-Overlap Metric (HEOM)

The Heterogeneous Euclidean-Overlap Metric; handles both continuous and
nominal attributes with overlap metric for nominal attributes and normalize
Euclidean distance for linear attributes ChitraDevi et al. (2012). In order to
tackle the issues of applications with both continuous and nominal attributes
is to apply a heterogeneous distance function that uses dissimilar attributes
distance functions on diverse categories of attributes, the unique technique that
has been used is overlap metric for combined nominal attributes and normalized
Euclidean distance for linear attributes. Therefore, da (the function de�nes the
distance between two values xi and xj of an attribute a as denoted in Equation
5) yields a value that normally in the interval 0, . . . , 1 (range [0; 1]), whether the
attributes is nominal or continuous. Heterogeneous Euclidean-Overlap Metric
(HEOM) (maybe heterogeneous) is computed as in ChitraDevi et al. (2012),
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this function describes the distance between two values xi and xj of a given
attribute a as:

da(xi, xj) =

 1 if xi or xj is unknown, else
overlap(xi, xj) if a is nominal, else

rn− diffa(xi, xj) if a is continuous

Unknown attribute values are controlled by returning an attribute distance
1 (i.e., maximal distance) if either of the attribute values is unknown. The
function overlap (each data points is mapped to a small set of features to
di�erent clusters) and the range-normalized di�erence rn − diff are de�ned
respectively as:

overlap(xi, xj) =

{
0, if xi = xj

1, otherwise

rn− diffa(xi, xj) =
|xi − xj |
rangea

(3)

The value rangea is used to normalize the attribute, and is given as:

rangea = maxa −mina (4)

where maxa and mina are the maximum and minimum values, respectively,
observed in the training set for attribute a. The data for the above de�nition
yields a value which is in the range 0, . . . , 1, whether the attribute is nominal
or linear. Therefore, the general distance between two input vectors xi and xj

is given by the Heterogeneous Euclidean-Overlap Metric function (HEOM) as
in ChitraDevi et al. (2012):

HEOM(xi, xj) =

√√√√ n∑
i=1

da(xi − xj)2 (5)

The distance function eliminates the special e�ects of the random order-
ing of nominal values, but its excessively naive method to handling nominal
attributes fails to make use of added evidence provided by nominal attribute
values that assist in simpli�cation.
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2.2 IQR-Heterogeneous Euclidean-Overlap Metric (HEOM)

In this section we will discuss the proposed heterogeneous distance func-
tions. The proposed method is based on the HEOM (refer to ChitraDevi et al.
(2012)). Therefore, ChitraDevi et al. (2012) claimed that by using range func-
tion as a local normalization in HEOM, and comparing the method to two
conventional distance functions of Euclidean and Manhattan. They concluded
that HEOM provides greater accuracy in performance. They based their ar-
gument by using cluster outliers detection in wireless sensor networks. The
HEOM method was criticized far back, that the distance function removes the
e�ect of the arbitrary ordering of nominal values. This means that this type
of approach is too simple in handling nominal attributes which fails to make
use of additional information given in nominal attribute values that can assist
in generalization. Recently, the proposed outliers detection model (ODM), is
built by using the K-Means clustering algorithm. They applied interquartile
range (IQR) as data preprocessing instead of range values. They further added
that the procedure used in HEOM, by dividing it with range allows outliers to
have intense in�uence on the contribution of the attributes. They believed that,
normal objects lie between the lower and upper extremes. They recommended
using interquartile range which is more robust to range against outliers in data
preprocessing.

For example, if variables happens to have values in the range of 0, . . . , 10, in
almost every case but with abnormal (and probable error) value of 50. Hence,
dividing all the values by the range would nearly give the results in all less
than 0.2. Generally, a silhouette measure of less than 0.20 shows a poor quality
result, a measure between 0.20 and 0.50 indicates a fair result, while values of
more than 0.50 shows good results.

Therefore, to increase the accuracy and break down points of the proposed
method, the interquartile range (IQR) with a break down point of 25%, and
has little resistance to outliers due to its focus on the center of the distribution
(Rousseeuw and Hubert (2011)) are used. Using IQR that is less sensitive
to outliers to range values. However, the weakness of HEOM according to
ChitraDevi et al. (2012), is going to be dealt with by this proposed method.
The proposed method is summarized as follows:

The function interquartilerange is computed by using the ideas from Chi-
traDevi et al. (2012):

iqrn− diffa(xi, xj) =
| xi − xj |

iqra
(6)
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where
iqra = Q3a −Q1a (7)

IQR-Heterogeneous Euclidean-Overlap Metric (IQR−HEOM) is de�ned
as,

IQR−HEOM(xi, xj) =

√√√√ n∑
i=1

da(xi − xj)2, (8)

where, da is being calculated for IQR−HEOM based on conditions in Equa-
tions 6 and 7.

2.3 K-Means Clustering Algorithm

The K-means clustering algorithm consist of four steps, which are iterated
until convergence Mohamad and Usman (2013). The iteration will stop when
the clusters produced are stable, which means there are no more movement
of objects crossing any group. The K-Means algorithms are enlisted by Lloyd
(1982) are as follows.

The K-Means clustering algorithm is broadly used in data mining to group
data with similar features together. Assumed n data points, the algorithm dis-
tributes them into k groups in three stages: (1) evaluate the distances between
data points with each of k clusters and assign the data to the nearest cluster,
(2) calculate the center of each cluster, (3) update the clusters repeatedly, un-
til the k clusters change no more or stabilized. The aim of the algorithm is to
minimize the cost function. The cost function (Khan (2012)),

J =

n∑
i=1

k∑
j=1

‖ xi − cj ‖2 (9)

where, ‖ xi − cj ‖2 is an arbitrary distance measure between a data point xi

and the cluster center cj is assigned to the distance of the n data points from
their individual centers.
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The algorithm consists of the following steps (Khan (2012)):

1. Initialize the centers at random;

2. Assign data points to their respective clusters having the nearest mean;

3. Compute new centers as means of the clusters assigned in step 2;

4. Repeat steps 2 and 3 until no change is made in the centers.

2.4 Two Internal Validity Measures

2.4.1 Silhouette Coe�cients

The Silhouette coe�cients contrast the average distance to elements in the
same with the average distance to elements in other clusters. Based on Chi-
traDevi et al. (2012), the Silhouette is computed as follows:

s(i) =
(b(i)− a(i))

max{a(i), b(i)}
(10)

where, i represents any object in the data set,
a(i) is the average distance (dissimilarity) of i to other objects in the same
cluster A, and
b(i) is the minimum (lowest) (average distance of i to all objects in the neigh-
boring clusters B). The dissimilarity is computed using distance measures.

The value of Silhouette coe�cient usually varies from −1 to +1, and the
cluster arrangement is extremely e�cient when the value is nearer to +1.

2.4.2 Cohesion values

The Cohesion is computed as in ChitraDevi et al. (2012):

Cohesion(ci) = SSE =

n∑
i=1

k∑
j=1

(xi −mj)
2, (11)
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where, mj represent each means for the clusters and j = 1, . . . , k (total number
of clusters with their various means are being computed). Cohesion is also
called as Sum of Squared Errors (SSE) or Within Sum of Squares.

Furthermore, it is important to mention that our experiment are going to
be evaluated in two di�erent ways, (i) normalized data, and (ii) NonNormal-
ized data; the following are carried out to compare the performance of the
proposed method and the existing methods. Firstly, we perform the K-Mean
clustering algorithm based on conventional and proposed methods. Secondly,
the silhouette coe�cients and cohesion values are compared under each dis-
tance functions to evaluate the performance of proposed method, ChitraDevi
et al. (2012):

Cohesion(ci) = SSE =

n∑
i=1

k∑
j=1

(xi −mj)
2, (12)

where, mj represent each means for the clusters and j = 1, . . . , k (total number
of clusters with their various means are being computed). Cohesion is also
called as Sum of Squared Errors (SSE) or Within Sum of Squares.

Furthermore, it is important to mention that our experiment are going to be
evaluated in two di�erent ways, (i) normalized data, and (ii) NonNormalized
data; the following are carried out to compare the performance of the proposed
method and the existing methods. Firstly, we perform the K-Mean cluster-
ing algorithm based on conventional and proposed methods. Secondly, the
silhouette coe�cients and cohesion values are compared under each distance
functions to evaluate the performance of proposed method.

3. Simulation Study

In this section, Monte Carlo simulation study is presented to compare the
performance of some existing methods such as Euclidean distance, Manhattan
distance and speci�cally the Heterogeneous Euclidean-Overlap Metric (HEOM)
(ChitraDevi et al. (2012)), with our proposed method Interquartile Range-
Heterogeneous Euclidean-Overlap Metric (IQR−HEOM).

The simulation is conducted on three examples comprising two and four
variables each in this study. The example is popular and often being used
by many researchers who study the stability of clusters by applying cohesion
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values and silhouette coe�cients (see, used by de Amorim and Hennig (2015)).

Following ChitraDevi et al. (2012); two variables (x1, x2) and four variables
(x1, x2, x3, x4) are generated with sample size (n = 50, 100, 160) each, measures
are calculated based on 1000 replications, and then using Equations 1, 2, 5, 8,
9, 10, and 11 on the data for evaluation. These experiments involve di�erent
width clusters as; 0.01, 0.02, 0.03, 0.05, 0.07, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24,
0.27, and 0.30. It consists of two sections, Non-normalized data and Normalized
data.

The performance of our proposed method is calculated based on the pa-
rameters for cohesion values as maximum > 1 (minimum < 1) and silhouette
coe�cients as maximum = 1 (minimum = 0).

The �rst experiment:
Each of the explanatory variables (x1, x2) and (x1, x2, x3, x4) are generated
from uniform distribution with parameters [−10, 10], and n = 50 sample size
each. The variables are estimated using cohesion values and silhouette coe�-
cients parameters.

The second experiment:
Each of the explanatory variables (x1, x2) and (x1, x2, x3, x4) are generated
from uniform distribution with parameters [−10, 10], and n = 100 sample size
each. The variables are estimated using cohesion values and silhouette coe�-
cients parameters.

The third experiment:
Each of the explanatory variables (x1, x2) and (x1, x2, x3, x4) are generated
from uniform distribution with parameters [−10, 10], and n = 160 sample size
each. The variables are estimated using cohesion values and silhouette coe�-
cients parameters.

After data is put in place as transformed and also untransformed data
respectively; the Euclidean distance, Manhattan distance, HEOM , and IQR−
HEOM are applied to the transformed and untransformed data. For each of
the experimental runs, there are 1000 replications. Then, the cohesion values
and silhouette coe�cients computed under each distance functions.
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4. Results and Discussion

Table 1, 2, 3, 4, 5, and 6 present the average values of 1000 replications
of the cohesion values and silhouette coe�cients. Tables 1, 2, 3, 4, 5, and 6
show the average cohesion values and silhouette coe�cients for various width
clusters. This results, signify that the non normalized simulated data under all
the methods had fair performance, unlike the normalized data. This indicates
that the performance of the proposed method is even fairly good by attaining
up to 0.27 width cluster of n = 160 sample size having four variables in non
normalized data and had performed excellent well under normalized data by
exhausting all the width clusters successful. Therefore, it is evidently clear
that the proposed method performance is much better based on the evaluation
carried on the simulated data compared to the existing methods.

Table 7 presents three di�erent sample size (n = 50, 100, 160), with two
(x1, x2) and four (x1, x2, x3, x4) attribute variables each, when the data is con-
taminated at 5% and 10%. Following the same simulation study as preced-
ing section, each of the variable is generated from uniform distribution with
range [−10, 10] and contaminated data is generated from uniform distribution
with range [15, 16]. The Euclidean distance, Manhattan distance, HEOM and
IQR−HEOM were then applied to the data.

The average cohesion values, silhouette coe�cients, and computational tim-
ing tests based on the 1000 simulation runs are presented in Table 7. From
the table it is clearly seen that, the proposed method has made tremendous
achievement, despite that the data is contaminated. However, the existing
methods compared to the proposed method had performed fairly well in clean
data.
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Table 1: Average Cohesion and Silhouette for various Width Clusters, (n = 50 (x1, x2))

Normalized(Classic) Normalized(NADS)
Parameters Parameter

Methods Coh. Silh. Methods Coh. Silh.
Width Dist. Max> 1(Min< 1) Max=1(Min=0) Dist. Max> 1(Min< 1) Max=1(Min=0)
0.01 Euc. 2.59E-04 1 Euc. 2.19E-05 0.99164
0.01 Manh. 3.62E-05 1 Manh. 2.19E-05 1
0.01 HEOM 3.81E-04 1 HEOM 2.19E-05 1
0.01 IQR-HEOM 3.81E-06 1 IQR-HEOM 2.69E-06 1
0.02 Euc. 5.38E-04 1 Euc. 7.09E-06 0.98591
0.02 Manh. 5.38E-04 1 Manh. 7.09E-06 0.98591
0.02 HEOM 0.00031 0.98618 HEOM 7.09E-06 0.98591
0.02 IQR-HEOM 7.39E-05 1 IQR-HEOM 8.53E-07 1
0.03 Euc. 6.38E-04 1 Euc. 7.09E-06 0.98591
0.03 Manh. 6.38E-04 1 Manh. 7.09E-06 0.98581
0.03 HEOM 0.00031 0.98618 HEOM 7.09E-06 0.98591
0.03 IQR-HEOM 2.57E-07 1 IQR-HEOM 4.95E-08 1
0.05 Euc. 0.00038 1 Euc. 0.00025 0.91372
0.05 Manh. 0.00371 1 Manh. 0.00015 0.93960
0.05 HEOM 0.00374 0.96947 HEOM 8.32E-05 0.96932
0.05 IQR-HEOM 5.71E-05 1 IQR-HEOM 2.59E-08 1
0.07 Euc. 9.71E-05 0.99190 Euc. 0.00097 1
0.07 Manh. 9.71E-06 1 Manh. 0.00025 0.91372
0.07 HEOM 0.01417 0.00403 HEOM 0.00030 0.90335
0.07 IQR-HEOM 7.39E-06 1 IQR-HEOM 7.09E-06 1
0.09 Euc. 0.29676 0.60749 Euc. 0.25566 0.52493
0.09 Manh. 0.12175 0.74468 Manh. 0.14686 0.39603
0.09 HEOM 7.14679 0.38833 HEOM 0.14686 0.39603
0.09 IQR-HEOM 0.15280 1 IQR-HEOM 0.00237 1
0.12 Euc. 0.00031 0.98618 Euc. 0.00612 0.60818
0.12 Manh. 0.00031 0.98618 Manh. 0.00252 0.74517
0.12 HEOM 0.10103 0.75346 HEOM 0.00211 0.75289
0.12 IQR-HEOM 7.78E-04 1 IQR-HEOM 4.82E-07 1
0.15 Euc. 0.00031 0.98618 Euc. 0.00625 0.54005
0.15 Manh. 0.00031 0.98618 Manh. 0.00470 0.60847
0.15 HEOM 0.20166 0.64425 HEOM 0.00417 0.64449
0.15 IQR-HEOM 3.61E-04 1 IQR-HEOM 2.89E-08 1
0.18 Euc. 0.00031 0.98618 Euc. 0.00151 0.45341
0.18 Manh. 0.00031 0.98618 Manh. 0.00815 0.57351
0.18 HEOM 0.03674 0.58727 HEOM 0.00778 0.58465
0.18 IQR-HEOM 0.013108 1 IQR-HEOM 7.65E-08 1
0.21 Euc. 0.00031 0.98618 Euc. 0.01775 0.0.52011
0.21 SManh. 0.00031 0.98618 Manh. 0.00790 0.57854
0.21 HEOM 0.37184 0.58581 HEOM 0.00764 0.58442
0.21 IQR-HEOM 0.018562 0.95468 IQR-HEOM 3.59E-07 1
0.24 Euc. 0.00251 0.97805 Euc. 0.02187 0.48116
0.24 Manh. 0.00031 0.98618 Manh. 0.00144 0.50832
0.24 HEOM 0.46667 0.55411 HEOM 0.00960 0.55483
0.24 IQR-HEOM 0.02487 0.93618 IQR-HEOM 7.09E-08 1
0.27 Euc. 0.00374 0.96947 Euc. 0.03030 0.44641
0.27 Manh. 0.00031 0.98618 Manh. 0.01823 0.50613
0.27 HEOM 0.59173 0.51784 HEOM 0.01233 0.51657
0.27 IQR-HEOM 0.05011 0.97690 IQR-HEOM 7.09E-08 1
0.30 Euc. 0.00515 0.95496 Euc. 0.03269 0.45973
0.30 Manh. 0.00374 0.96947 Manh. 0.02377 0.43992
0.30 HEOM 1.06160 0.48058 HEOM 0.01906 0.48078
0.30 IQR-HEOM 0.11682 0.98124 IQR-HEOM 7.09E-08 1

262 Malaysian Journal of Mathematical Sciences



Modi�ed Statistical Approach for Data Preprocessing

Table 2: Average Cohesion and Silhouette for various Width Clusters, (n = 50, (x1, x2, x3, x4))

Normalized(Classic) Normalized(NADS)
Parameters Parameter

Methods Coh. Silh. Methods Coh. Silh.
Width Dist. Max> 1(Min< 1) Max=1(Min=0) Dist. Max> 1(Min< 1) Max=1(Min=0)
0.01 Euc. 1.59E-04 1 Euc. 1.19E-05 0.98164
0.01 Manh. 2.62E-05 1 Manh. 1.19E-05 1
0.01 HEOM 2.81E-04 1 HEOM 1.19E-05 1
0.01 IQR-HEOM 2.81E-06 1 IQR-HEOM 1.69E-06 1
0.02 Euc. 4.38E-04 1 Euc. 6.09E-06 0.98591
0.02 Manh. 1.38E-04 1 Manh. 6.09E-06 0.98482
0.02 HEOM 0.00032 0.97722 HEOM 6.09E-06 0.98428
0.02 IQR-HEOM 6.39E-05 1 IQR-HEOM 7.53E-07 1
0.03 Euc. 5.38E-04 1 Euc. 6.09E-06 0.98482
0.03 Manh. 5.38E-04 1 Manh. 7.09E-06 0.98482
0.03 HEOM 0.00031 0.98527 HEOM 6.09E-06 0.98482
0.03 IQR-HEOM 1.57E-07 1 IQR-HEOM 3.95E-08 1
0.05 Euc. 0.00038 1 Euc. 0.00025 0.91483
0.05 Manh. 0.00371 1 Manh. 0.00015 0.93851
0.05 HEOM 0.00374 0.96836 HEOM 7.32E-05 0.96821
0.05 IQR-HEOM 4.71E-05 1 IQR-HEOM 1.59E-08 1
0.07 Euc. 7.71E-05 0.99392 Euc. 0.00097 1
0.07 Manh. 8.71E-06 1 Manh. 0.00025 0.91483
0.07 HEOM 0.01417 0.00403 HEOM 0.00030 0.90446
0.07 IQR-HEOM 6.39E-06 1 IQR-HEOM 6.09E-06 1
0.09 Euc. 0.29676 0.60749 Euc. 0.25566 0.52493
0.09 Manh. 0.12175 0.74468 Manh. 0.14686 0.39603
0.09 HEOM 6.14679 0.38833 HEOM 0.14686 0.39603
0.09 IQR-HEOM 0.15280 1 IQR-HEOM 0.00237 1
0.12 Euc. 0.00031 0.98729 Euc. 0.00612 0.60818
0.12 Manh. 0.00031 0.98729 Manh. 0.00252 0.74629
0.12 HEOM 0.10103 0.75457 HEOM 0.00211 0.75392
0.12 IQR-HEOM 6.78E-04 1 IQR-HEOM 3.82E-07 1
0.15 Euc. 0.00031 0.98728 Euc. 0.00625 0.54215
0.15 Manh. 0.00031 0.98729 Manh. 0.00470 0.60956
0.15 HEOM 0.21772 0.64536 HEOM 0.00417 0.64558
0.15 IQR-HEOM 2.61E-04 1 IQR-HEOM 1.89E-08 1
0.18 Euc. 0.00031 0.98727 Euc. 0.00151 0.45452
0.18 Manh. 0.00031 0.98729 Manh. 0.00815 0.57462
0.18 HEOM 0.03674 0.58838 HEOM 0.00778 0.58576
0.18 IQR-HEOM 0.01310 1 IQR-HEOM 6.65E-08 1
0.21 Euc. 0.00031 0.98729 Euc. 0.01775 0.52122
0.21 SManh. 0.00031 0.98729 Manh. 0.00790 0.57743
0.21 HEOM 0.37184 0.58692 HEOM 0.00764 0.58553
0.21 IQR-HEOM 0.01856 0.95579 IQR-HEOM 2.59E-07 1
0.24 Euc. 0.00251 0.97916 Euc. 0.02187 0.48227
0.24 Manh. 0.00031 0.98729 Manh. 0.00144 0.50943
0.24 HEOM 0.46778 0.55522 HEOM 0.00960 0.55594
0.24 IQR-HEOM 0.02487 0.93729 IQR-HEOM 6.09E-08 1
0.27 Euc. 0.00374 0.96836 Euc. 0.03030 0.44752
0.27 Manh. 0.00031 0.98729 Manh. 0.01823 0.50724
0.27 HEOM 0.59294 0.51673 HEOM 0.01233 0.51768
0.27 IQR-HEOM 0.05011 0.97581 IQR-HEOM 6.09E-08 1
0.30 Euc. 0.00515 0.95385 Euc. 0.03269 0.45862
0.30 Manh. 0.00374 0.96958 Manh. 0.02377 0.43883
0.30 HEOM 1.06163 0.48169 HEOM 0.01906 0.48189
0.30 IQR-HEOM 0.11682 0.98235 IQR-HEOM 6.09E-08 1
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Table 3: Average Cohesion and Silhouette for various Width Clusters, (n = 100, (x1, x2))

Normalized(Classic) Normalized(NADS)
Parameters Parameter

Methods Coh. Silh. Methods Coh. Silh.
Width Dist. Max> 1(Min< 1) Max=1(Min=0) Dist. Max> 1(Min< 1) Max=1(Min=0)
0.01 Euc. 4.59E-04 1 Euc. 4.19E-05 0.99386
0.01 Manh. 1.62E-05 1 Manh. 4.19E-05 1
0.01 HEOM 1.81E-04 1 HEOM 4.19E-05 1
0.01 IQR-HEOM 1.81E-06 1 IQR-HEOM 4.69E-06 1
0.02 Euc. 3.38E-04 1 Euc. 5.09E-06 0.98773
0.02 Manh. 3.38E-04 1 Manh. 5.09E-06 0.98772
0.02 HEOM 0.00031 0.98436 HEOM 5.09E-06 0.98773
0.02 IQR-HEOM 5.39E-05 1 IQR-HEOM 6.53E-07 1
0.03 Euc. 4.38E-04 1 Euc. 5.09E-06 0.98772
0.03 Manh. 4.38E-04 1 Manh. 5.09E-06 0.98772
0.03 HEOM 0.00031 0.98772 HEOM 5.09E-06 0.98772
0.03 IQR-HEOM 4.57E-07 1 IQR-HEOM 2.95E-08 1
0.05 Euc. 0.00038 1 Euc. 0.00025 0.93594
0.05 Manh. 0.00371 1 Manh. 0.00015 0.93742
0.05 HEOM 0.00374 0.96769 HEOM 6.32E-05 0.96754
0.05 IQR-HEOM 3.71E-05 1 IQR-HEOM 4.59E-08 1
0.07 Euc. 7.71E-05 0.99372 Euc. 0.00097 1
0.07 Manh. 7.71E-06 1 Manh. 0.00025 0.93594
0.07 HEOM 0.01417 0.00403 HEOM 0.00030 0.92557
0.07 IQR-HEOM 5.39E-06 1 IQR-HEOM 5.09E-06 1
0.09 Euc. 0.29898 0.62967 Euc. 0.25788 0.52675
0.09 Manh. 0.12397 0.74686 Manh. 0.14868 0.39825
0.09 HEOM 7.14897 0.38655 HEOM 0.14864 0.39825
0.09 IQR-HEOM 0.15462 1 IQR-HEOM 0.00237 1
0.12 Euc. 0.00031 0.98836 Euc. 0.00612 0.60636
0.12 Manh. 0.00031 0.98826 Manh. 0.00252 0.74739
0.12 HEOM 0.10103 0.75568 HEOM 0.00211 0.75467
0.12 IQR-HEOM 5.78E-04 1 IQR-HEOM 4.82E-07 1
0.15 Euc. 0.00031 0.98836 Euc. 0.00625 0.54227
0.15 Manh. 0.00031 0.98436 Manh. 0.00470 0.60625
0.15 HEOM 0.20344 0.64203 HEOM 0.00417 0.64227
0.15 IQR-HEOM 1.61E-04 1 IQR-HEOM 4.89E-08 1
0.18 Euc. 0.00031 0.98436 Euc. 0.00151 0.45123
0.18 Manh. 0.00031 0.98436 Manh. 0.00815 0.57133
0.18 HEOM 0.03674 0.58705 HEOM 0.00778 0.58243
0.18 IQR-HEOM 0.01310 1 IQR-HEOM 5.65E-08 1
0.21 Euc. 0.00031 0.98416 Euc. 0.01775 0.0.52221
0.21 SManh. 0.00031 0.98436 Manh. 0.00790 0.57632
0.21 HEOM 0.37362 0.58363 HEOM 0.00764 0.58220
0.21 IQR-HEOM 0.01856 1 IQR-HEOM 2.59E-07 1
0.24 Euc. 0.00251 0.97623 Euc. 0.02187 0.48224
0.24 Manh. 0.00031 0.98436 Manh. 0.00144 0.508610
0.24 HEOM 0.42225 0.5323 HEOM 0.00960 0.5326
0.24 IQR-HEOM 0.02487 1 IQR-HEOM 5.09E-08 1
0.27 Euc. 0.00374 0.94723 Euc. 0.03030 0.44423
0.27 Manh. 0.00031 0.96436 Manh. 0.01823 0.50431
0.27 HEOM 0.59251 0.51562 HEOM 0.01233 0.51435
0.27 IQR-HEOM 0.05011 0.97872 IQR-HEOM 5.09E-08 1
0.30 Euc. 0.00515 0.95274 Euc. 0.03269 0.45752
0.30 Manh. 0.00374 0.96725 Manh. 0.02377 0.43770
0.30 HEOM 1.06160 0.48236 HEOM 0.01906 0.48256
0.30 IQR-HEOM 0.116825 0.98246 IQR-HEOM 5.09E-08 1
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Table 4: Average Cohesion and Silhouette for various Width Clusters, (n = 100, (x1, x2, x3, x4))

Normalized(Classic) Normalized(NADS)
Parameters Parameter

Methods Coh. Silh. Methods Coh. Silh.
Width Dist. Max> 1(Min< 1) Max=1(Min=0) Dist. Max> 1(Min< 1) Max=1(Min=0)
0.01 Euc. 5.59E-04 1 Euc. 5.19E-05 0.96431
0.01 Manh. 6.62E-05 1 Manh. 5.19E-05 1
0.01 HEOM 6.81E-04 1 HEOM 5.19E-05 1
0.01 IQR-HEOM 6.81E-06 1 IQR-HEOM 5.69E-06 1
0.02 Euc. 8.38E-04 1 Euc. 4.09E-06 0.98273
0.02 Manh. 8.38E-04 1 Manh. 4.09E-06 0.98273
0.02 HEOM 0.00031 0.98345 HEOM 4.09E-06 0.98374
0.02 IQR-HEOM 4.39E-05 1 IQR-HEOM 5.53E-07 1
0.03 Euc. 3.38E-04 1 Euc. 4.09E-06 0.98274
0.03 Manh. 3.38E-04 1 Manh. 4.09E-06 0.98254
0.03 HEOM 0.00031 0.98345 HEOM 4.09E-06 0.98274
0.03 IQR-HEOM 5.57E-07 1 IQR-HEOM 4.95E-08 1
0.05 Euc. 0.00038 1 Euc. 0.00025 0.91705
0.05 Manh. 0.00371 1 Manh. 0.00015 0.93733
0.05 HEOM 0.00374 0.96714 HEOM 5.32E-05 0.96705
0.05 IQR-HEOM 8.71E-05 1 IQR-HEOM 2.59E-08 1
0.07 Euc. 6.71E-05 0.99473 Euc. 0.00097 1
0.07 Manh. 6.71E-06 1 Manh. 0.00025 0.91045
0.07 HEOM 0.01417 0.00403 HEOM 0.00030 0.90002
0.07 IQR-HEOM 4.39E-06 1 IQR-HEOM 4.09E-06 1
0.09 Euc. 0.29343 0.60316 Euc. 0.25566 0.52160
0.09 Manh. 0.12142 0.74135 Manh. 0.14353 0.39330
0.09 HEOM 4.14346 0.38500 HEOM 0.14353 0.39334
0.09 IQR-HEOM 0.15280 1 IQR-HEOM 0.00237 1
0.12 Euc. 0.00031 0.98345 Euc. 0.00612 0.60545
0.12 Manh. 0.00031 0.98345 Manh. 0.00252 0.74244
0.12 HEOM 0.10103 0.75013 HEOM 0.00211 0.75556
0.12 IQR-HEOM 4.78E-04 1 IQR-HEOM 1.82E-07 1
0.15 Euc. 0.00031 0.98345 Euc. 0.00625 0.54332
0.15 Manh. 0.00031 0.98345 Manh. 0.00470 0.60514
0.15 HEOM 0.20433 0.64152 HEOM 0.00417 0.64116
0.15 IQR-HEOM 6.61E-04 1 IQR-HEOM 5.89E-08 1
0.18 Euc. 0.00031 0.98345 Euc. 0.00151 0.45014
0.18 Manh. 0.00031 0.98345 Manh. 0.00815 0.57024
0.18 HEOM 0.03674 0.58454 HEOM 0.00778 0.58132
0.18 IQR-HEOM 0.01310 1 IQR-HEOM 4.65E-08 1
0.21 Euc. 0.00031 0.98345 Euc. 0.01775 0.0.52344
0.21 SManh. 0.00031 0.98345 Manh. 0.00790 0.57521
0.21 HEOM 0.37451 0.58254 HEOM 0.00764 0.58115
0.21 IQR-HEOM 0.01856 1 IQR-HEOM 6.59E-07 1
0.24 Euc. 0.00251 0.97432 Euc. 0.02187 0.48443
0.24 Manh. 0.00031 0.98345 Manh. 0.00144 0.50505
0.24 HEOM 0.46224 0.55144 HEOM 0.00960 0.55150
0.24 IQR-HEOM 0.02487 1 IQR-HEOM 4.09E-08 1
0.27 Euc. 0.00374 0.96614 Euc. 0.03030 0.44314
0.27 Manh. 0.00031 0.98345 Manh. 0.01823 0.50340
0.27 HEOM 0.59440 0.51451 HEOM 0.01233 0.51324
0.27 IQR-HEOM 0.05011 0.97363 IQR-HEOM 4.09E-08 1
0.30 Euc. 0.00515 0.95163 Euc. 0.03269 0.45640
0.30 Manh. 0.00374 0.96614 Manh. 0.02377 0.43665
0.30 HEOM 1.06160 0.48325 HEOM 0.01906 0.48345
0.30 IQR-HEOM 0.11682 0.98451 IQR-HEOM 4.09E-08 1
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Table 5: Average Cohesion and Silhouette for various Width Clusters, (n = 160, (x1, x2))

Normalized(Classic) Normalized(NADS)
Parameters Parameter

Methods Coh. Silh. Methods Coh. Silh.
Width Dist. Max> 1(Min< 1) Max=1(Min=0) Dist. Max> 1(Min< 1) Max=1(Min=0)
0.01 Euc. 6.59E-04 1 Euc. 6.19E-05 0.99528
0.01 Manh. 7.62E-05 1 Manh. 6.19E-05 1
0.01 HEOM 7.81E-04 1 HEOM 2.19E-05 1
0.01 IQR-HEOM 7.81E-06 1 IQR-HEOM 6.69E-06 1
0.02 Euc. 9.38E-04 1 Euc. 3.09E-06 0.98155
0.02 Manh. 9.38E-04 1 Manh. 3.09E-06 0.98264
0.02 HEOM 0.00031 0.98244 HEOM 3.09E-06 0.98155
0.02 IQR-HEOM 3.39E-05 1 IQR-HEOM 5.53E-07 1
0.03 Euc. 2.38E-04 1 Euc. 3.09E-06 0.98155
0.03 Manh. 2.38E-04 1 Manh. 3.09E-06 0.98145
0.03 HEOM 0.00031 0.98345 HEOM 3.09E-06 0.98154
0.03 IQR-HEOM 6.57E-07 1 IQR-HEOM 8.95E-08 1
0.05 Euc. 0.00038 1 Euc. 0.00025 0.91745
0.05 Manh. 0.00371 1 Manh. 0.00015 0.93524
0.05 HEOM 0.00374 0.96513 HEOM 4.32E-05 0.96573
0.05 IQR-HEOM 1.71E-05 1 IQR-HEOM 6.59E-08 1
0.07 Euc. 5.71E-05 0.99555 Euc. 0.00097 1
0.07 Manh. 5.71E-06 1 Manh. 0.00025 0.91735
0.07 HEOM 0.01417 0.00403 HEOM 0.00030 0.90331
0.07 IQR-HEOM 3.39E-06 1 IQR-HEOM 3.09E-06 1
0.09 Euc. 0.29676 0.60315 Euc. 0.25122 0.52157
0.09 Manh. 0.12432 0.74124 Manh. 0.14242 0.39247
0.09 HEOM 7.14235 0.38477 HEOM 0.14242 0.39247
0.09 IQR-HEOM 0.15644 1 IQR-HEOM 0.00237 1
0.12 Euc. 0.00031 0.98645 Euc. 0.00612 0.60454
0.12 Manh. 0.00031 0.98254 Manh. 0.00252 0.74153
0.12 HEOM 0.10103 0.75713 HEOM 0.00211 0.75645
0.12 IQR-HEOM 3.78E-04 1 IQR-HEOM 8.82E-07 1
0.15 Euc. 0.00031 0.98254 Euc. 0.00625 0.54441
0.15 Manh. 0.00031 0.98254 Manh. 0.00470 0.60403
0.15 HEOM 0.20522 0.64061 HEOM 0.00417 0.64005
0.15 IQR-HEOM 7.61E-04 1 IQR-HEOM 6.89E-08 1
0.18 Euc. 0.00031 0.98254 Euc. 0.00151 0.45704
0.18 Manh. 0.00031 0.98254 Manh. 0.00815 0.57315
0.18 HEOM 0.03674 0.58363 HEOM 0.00778 0.58021
0.18 IQR-HEOM 0.01310 1 IQR-HEOM 3.65E-08 1
0.21 Euc. 0.00031 0.98245 Euc. 0.01775 0.0.52455
0.21 SManh. 0.00031 0.98251 Manh. 0.00790 0.57410
0.21 HEOM 0.37540 0.58145 HEOM 0.00764 0.58006
0.21 IQR-HEOM 0.01856 1 IQR-HEOM 7.59E-07 1
0.24 Euc. 0.00251 0.97441 Euc. 0.02187 0.48152
0.24 Manh. 0.00031 0.98254 Manh. 0.00144 0.50476
0.24 HEOM 0.46223 0.55055 HEOM 0.00960 0.55057
0.24 IQR-HEOM 0.02487 1 IQR-HEOM 3.09E-08 1
0.27 Euc. 0.00374 0.96503 Euc. 0.03030 0.44205
0.27 Manh. 0.00031 0.98254 Manh. 0.01823 0.50257
0.27 HEOM 0.59137 0.51340 HEOM 0.01233 0.516571
0.27 IQR-HEOM 0.05011 1 IQR-HEOM 3.09E-08 1
0.30 Euc. 0.00515 0.95052 Euc. 0.03269 0.45537
0.30 Manh. 0.00374 0.96503 Manh. 0.02377 0.43556
0.30 HEOM 1.06160 0.48414 HEOM 0.01906 0.48434
0.30 IQR-HEOM 0.11682 1 IQR-HEOM 3.09E-08 1
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Table 6: Average Cohesion and Silhouette for various Width Clusters, (n = 160, (x1, x2, x3, x4))

Normalized(Classic) Normalized(NADS)
Parameters Parameter

Methods Coh. Silh. Methods Coh. Silh.
Width Dist. Max> 1(Min< 1) Max=1(Min=0) Dist. Max> 1(Min< 1) Max=1(Min=0)
0.01 Euc. 5.59E-04 1 Euc. 3.19E-05 0.99431
0.01 Manh. 7.62E-05 1 Manh. 5.19E-05 1
0.01 HEOM 4.81E-04 1 HEOM 5.19E-05 1
0.01 IQR-HEOM 4.81E-06 1 IQR-HEOM 5.69E-06 1
0.02 Euc. 4.38E-04 1 Euc. 3.09E-06 0.98372
0.02 Manh. 4.38E-04 1 Manh. 5.09E-06 0.98364
0.02 HEOM 0.00031 0.98345 HEOM 2.09E-06 0.98363
0.02 IQR-HEOM 5.39E-05 1 IQR-HEOM 4.53E-07 1
0.03 Euc. 4.38E-04 1 Euc. 4.09E-06 0.98653
0.03 Manh. 4.38E-04 1 Manh. 5.09E-06 0.98354
0.03 HEOM 0.00031 0.98436 HEOM 5.09E-06 0.98373
0.03 IQR-HEOM 5.57E-07 1 IQR-HEOM 6.95E-08 1
0.05 Euc. 0.00038 1 Euc. 0.00025 0.91594
0.05 Manh. 0.00371 1 Manh. 0.00015 0.93742
0.05 HEOM 0.00374 0.96725 HEOM 6.32E-05 0.96714
0.05 IQR-HEOM 3.71E-05 1 IQR-HEOM 4.59E-08 1
0.07 Euc. 7.71E-05 0.99372 Euc. 0.00097 1
0.07 Manh. 7.71E-06 1 Manh. 0.00025 0.91150
0.07 HEOM 0.01417 0.00403 HEOM 0.00030 0.90112
0.07 IQR-HEOM 4.39E-06 1 IQR-HEOM 4.09E-06 1
0.09 Euc. 0.29343 0.60316 Euc. 0.25122 0.52182
0.09 Manh. 0.12441 0.74246 Manh. 0.14353 0.39330
0.09 HEOM 8.14349 0.38611 HEOM 0.14353 0.39334
0.09 IQR-HEOM 0.132802 1 IQR-HEOM 0.00235 1
0.12 Euc. 0.00031 0.98344 Euc. 0.00612 0.60545
0.12 Manh. 0.00031 0.98253 Manh. 0.00252 0.74243
0.12 HEOM 0.10103 0.75124 HEOM 0.00211 0.75067
0.12 IQR-HEOM 5.78E-04 1 IQR-HEOM 2.82E-07 1
0.15 Euc. 0.00031 0.98346 Euc. 0.00625 0.54447
0.15 Manh. 0.00031 0.98345 Manh. 0.00470 0.60516
0.15 HEOM 0.20433 0.64153 HEOM 0.00417 0.641167
0.15 IQR-HEOM 4.61E-04 1 IQR-HEOM 4.89E-08 1
0.18 Euc. 0.00031 0.98436 Euc. 0.00151 0.453563
0.18 Manh. 0.00031 0.98346 Manh. 0.00815 0.57234
0.18 HEOM 0.03674 0.58505 HEOM 0.00778 0.584243
0.18 IQR-HEOM 0.01311 1 IQR-HEOM 4.65E-08 1
0.21 Euc. 0.00031 0.98345 Euc. 0.01775 0.0.52344
0.21 SManh. 0.00031 0.98254 Manh. 0.00790 0.57526
0.21 HEOM 0.37540 0.58145 HEOM 0.00764 0.58116
0.21 IQR-HEOM 0.01856 1 IQR-HEOM 8.59E-07 1
0.24 Euc. 0.00251 0.97350 Euc. 0.02187 0.48661
0.24 Manh. 0.00031 0.98345 Manh. 0.00144 0.50565
0.24 HEOM 0.46223 0.55055 HEOM 0.00960 0.55438
0.24 IQR-HEOM 0.02487 1 IQR-HEOM 6.09E-08 1
0.27 Euc. 0.00374 0.96725 Euc. 0.03030 0.44423
0.27 Manh. 0.00031 0.98345 Manh. 0.01823 0.50340
0.27 HEOM 0.59620 0.51239 HEOM 0.01233 0.51102
0.27 IQR-HEOM 0.05022 1 IQR-HEOM 6.09E-08 1
0.30 Euc. 0.00515 0.95274 Euc. 0.03269 0.45751
0.30 Manh. 0.00374 0.96614 Manh. 0.02377 0.43665
0.30 HEOM 1.061603 0.48414 HEOM 0.01906 0.48434
0.30 IQR-HEOM 0.11165 0.99235 IQR-HEOM 6.09E-08 1
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Table 7: Average Cohesion, Silhouette values and Computing Time, (n = 50, 100, 160)

n Cont. Method
x1, x2 x1, x2, x3, x4

Av.Coh.(Silh.) C.Time Av.Coh.(Silh.) C.Time

50

5%
Euc. 0.0007(0.9920) 52 0.0002(0.9872) 57
Manh. 0.0003(0.9941) 54 0.0001(0.9883) 56
HEOM 0.0004(0.9835) 57 0.0001(0.9547) 60

IQR-HEOM 1.95E-08(1) 47 2.36E-07(1) 50

10%

Euc. 0.0003(0.9372) 62 0.0001(0.8900) 65
Manh. 0.0005(0.9409) 61 0.0003(0.8875) 62
HEOM 0.0001(0.8955) 64 0.0004(0.8146) 66

IQR-HEOM 4.29E-07(1) 54 5.33E-07(1) 56

100

5%
Euc. 0.0016(0.6911) 64 0.0027(0.6657) 66
Manh. 0.0023(0.6892) 63 0.0049(0.6660) 65
HEOM 0.0032(0.6370) 66 0.5943(0.5780) 68

IQR-HEOM 3.92E-06(1) 59 1.33E-06(1) 61

10%

Euc. 0.0395(0.4753) 71 0.0317(0.4753) 73
Manh. 0.0537(0.4778) 69 0.0517(0.4011) 71
HEOM 0.0327(0.3690) 72 0.0149(0.3084) 74

IQR-HEOM 2.69E-05(1) 64 5.33E-05(1) 66

160

5%
Euc. 0.7146(0.2414) 70 0.8317(0.2340) 72
Manh. 0.6946(0.2710) 69 0.7938(0.2554) 71
HEOM 0.9872(0.1915) 72 1.0325(0.1961) 74

IQR-HEOM 0.0001(0.9821) 64 0.0004(0.9504) 67

10%

Euc. 0.9546(0.1213) 73 0.9934(0.1172) 75
Manh. 0.9033(0.1424) 70 0.9726(0.1253) 74
HEOM 1.2437(0.0175) 73 2.1513(0.0017) 77

IQR-HEOM 0.0037(0.9673) 66 0.0022(0.9452) 68

4.1 Real Data Applications

In this section, the Iris, Hayes-Roth, and Tae datasets are considered to
verify the performance of our proposed methods:

Iris dataset: The iris dataset was applied by many researchers. The dataset
contains 3 classes of 150 instances each, where each class refers to a type of iris
plant. It comprises the following attributes information: (1) Sepal length in
cm, (2) Sepal width in cm, (3) Petal length in cm, and (4) Petal width in cm.
The classes are listed as follows: (1) iris Setosa, (2) iris Verisiclor, and (3) iris
Virginica.

Hayes-Roth dataset: The Hayes-Roth dataset was used by many researchers
such as Uddin et al. (2017), and Ryu and Eick (2005). The dataset contains 3
classes of 160 instances each, with 4 attributes namely: (1) hobby, (2) age, (3)
educational, and (4) marital status.
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Tae (Teaching Assistant Evaluation) dataset: The Tae dataset was used
by many researchers. The dataset contains 3 classes of 151 instances each, with
5 attributes namely: (1) native, (2) instructor, (3) course, (4) semester, and
(5) size.

The performances of our methods are compared to other methods, are eval-
uated based on the average external validity measures and computational time.

Table 8: Average Silh. coe�cients and Coh. values under each Dist. Functions for Iris, Hayes-Roth
and Tae Datasets

Iris Dataset
Methods Euclidean Manhattan HEOM IQR-HEOM

Parameters Silh. Coh. Silh. Coh. Silh. Coh. Silh. Coh.
Max =1 Max> 1 Max =1 Max> 1 Max=1 Max> 1 Max=1 Max>1

Width (Min=0) (Min<1) (Min=0) (Min<1) (Min=0) (Min<1) (Min=0) (Min<1)
0.01 1 3.26E-06 1 3.49E-06 1 3.58E-05 1 6.50E-07
0.02 1 2.71E-05 1 1.57E-05 1 2.87E-04 1 4.94E-06
0.05 0.997125 1.03E-05 0.997125 1.03E-05 0.800502 0.006038 1 3.97E-05
0.10 0.981305 0.000164 0.981305 0.000164 0.383485 0.069038 1 1.83E-04
0.15 0.845241 0.003832 0.946758 0.000829 0.187431 0.159342 1 3.49E-04
0.20 0.721084 0.010818 0.898028 0.002183 0.252529 0.213464 1 7.73E-04

Hayes-Roth Dataset
Methods Euclidean Manhattan HEOM IQR-HEOM

Parameters Silh. Coh. Silh. Coh. Silh. Coh. Silh. Coh.
Max=1 Max> 1 Max=1 Max> 1 Max=1 Max> 1 Max=1 Max>1

Width (Min=0) (Min<1) (Min=0) (Min<1) (Min=0) (Min<1) (Min=0) (Min<1)
0.01 0.996474 8.83E-07 0.996474 8.83E-07 1 9.81E-08 1 8.66E-10
0.02 0.997278 9.86E-06 0.997278 9.86E-06 1 6.82E-07 1 7.79E-09
0.05 0.981316 0.000104 0.981316 0.000104 0.996474 8.83E-07 1 8.52E-08
0.10 0.970324 0.000470 0.970324 0.000470 0.991109 2.69E-05 1 8.85E-07
0.15 0.961897 0.001516 0.961897 0.001516 0.983836 7.18E-05 0.997278 8.83E-07
0.20 0.956271 0.001977 0.956271 0.001977 0.976156 0.000168 0.996474 9.86E-06

Tae Dataset
Methods Euclidean Manhattan HEOM IQR-HEOM

Parameters Silh. Coh. Silh. Coh. Silh. Coh. Silh. Coh.
Max=1 Max> 1 Max=1 Max> 1 Max=1 Max> 1 Max=1 Max>1

Width (Min=0) (Min<1) (Min=0) (Min<1) (Min=0) (Min<1) (Min=0) (Min<1)
0.01 1 2.87E-09 1 3.67E-08 1 3.59E-04 1 3.64E-08
0.02 1 1.77E-05 1 3.83E-08 0.966560 0.055188 1 2.93E-07
0.05 1 3.82E-05 1 2.35E-07 0.896195 0.743929 1 2.58E-07
0.10 1 3.58E-04 1 1.58E-06 0.736611 3.252349 1 1.69E-06
0.15 1 1.63E-04 1 1.45E-05 0.662927 6.279123 1 1.28E-05
0.20 0.956782 1.67E-04 0.983415 3.78E-05 0.452501 22.42122 1 3.17E-04

Table 8 presents the performance of silhouette coe�cients and cohesion val-
ues on distance functions. It can be seen that the IQR−HEOM has recorded
the highest performance under all the three datasets used. However, the pro-
posed method is better in performance compared to the existing traditional
methods.

5. Concluding Remarks

In this paper, we proposed a method to overcome the weakness of using
range function as a local normalization in HEOM . The procedure applied
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in HEOM , by dividing it with range allows outliers to have big e�ect on the
contribution of the attributes. They further recommended using interquartile
range which is more robust to range against outliers in data preprocessing.
The new method is called IQR − HEOM . The proposed method is based
on the use of IQR function to increase the accuracy and breakdown point
(refer to ChitraDevi et al. (2012)). In our proposed method we make use of
IQR function, which has breakdown point of 25%, and has little resistance to
outliers due to its focus on the center of the distribution in Rousseeuw and
Hubert (2011).

To investigate the performance of our proposed method, simulation study
and real life datasets are considered. The results indicate that HEOM method
has least performance. This may be due to the fact that it uses range function
as a local normalization approach; which has 0% breakdown point and is not
resistance to outliers.

We also present three di�erent sample size (n = 50, 100, 160), with two
and four attribute variables each, contaminate at 5% and 10% each and are
generated to evaluate the average cohesion values, silhouette coe�cients and
computing time (minutes). However, despite the contamination of the data,
still the proposed method had shown good performance.

The proposed method has good performance, evidently by achieving the
maximum point of 1 in the silhouette coe�cients and attaining almost the
minimum of less than 1 in the cohesion values. Therefore, from the results, it
can be concluded that the IQR−HEOM method is better, which shown good
performance in the simulation and real life data sets compared to the existing
classical methods.
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